Search results

Search for "silver oxide" in Full Text gives 12 result(s) in Beilstein Journal of Nanotechnology.

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • biomedical applications, such as in therapies that involve magnetic manipulation with photothermal effect promoting a localized bactericidal activity [42][47][48][49]. Properties and oxidative dissolution The oxidative dissolution of AgNPs occurs by the oxidation of silver to silver oxide (Ag2O), with
PDF
Album
Supp Info
Review
Published 14 May 2021

Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition

  • Cristiano Glessi,
  • Aya Mahgoub,
  • Cornelis W. Hagen and
  • Mats Tilset

Beilstein J. Nanotechnol. 2021, 12, 257–269, doi:10.3762/bjnano.12.21

Graphical Abstract
  • iodides [48]. For the triazolium salt the two alkylation reactions were carried out together in a one-pot synthesis [36]. The resulting salts were then reacted with silver oxide to generate the respective Ag(I) NHC complexes. Upon the addition of 1 equiv of gold precursor Au(SMe2)Cl in situ, a
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2021

Oxidation of Au/Ag films by oxygen plasma: phase separation and generation of nanoporosity

  • Abdel-Aziz El Mel,
  • Said A. Mansour,
  • Mujaheed Pasha,
  • Atef Zekri,
  • Janarthanan Ponraj,
  • Akshath Shetty and
  • Yousef Haik

Beilstein J. Nanotechnol. 2020, 11, 1608–1614, doi:10.3762/bjnano.11.143

Graphical Abstract
  • metal/silver oxide interface. Based on the scanning transmission electron microscopy analysis coupled with energy dispersive X-ray mapping a mechanism was proposed based on solid-state diffusion and the Kirkendall effect to explain the different steps occurring during the oxidation process. Keywords
  • gold/silver oxide nanostructures [20]. Starting from Au/Ag alloy nanospheres, they showed that gold/silver oxide core/shell nanospheres with a hollow interior could be obtained after oxidation using atomic oxygen. In this study we further explored the oxidation and phase separation events observed by
  • formation of unique features, consisting of silver oxide nanoporous microspheres (Figure 1). Our observation was supported by various characterization techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction spectroscopy (XRD). We conducted our
PDF
Album
Full Research Paper
Published 22 Oct 2020

Fabrication of Ag-modified hollow titania spheres via controlled silver diffusion in Ag–TiO2 core–shell nanostructures

  • Bartosz Bartosewicz,
  • Malwina Liszewska,
  • Bogusław Budner,
  • Marta Michalska-Domańska,
  • Krzysztof Kopczyński and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2020, 11, 141–146, doi:10.3762/bjnano.11.12

Graphical Abstract
  • ]. The peak associated with silver oxide appears at lower binding energies than the peak of metallic silver [26][27]. Due to the very small offset for different forms of silver oxide, only one peak located between 367.27 and 367.58 eV with a half-width of 1.03–1.07 eV was modeled in the spectra. The
PDF
Album
Supp Info
Letter
Published 10 Jan 2020

Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic electronic devices

  • Marwa Mokni,
  • Gianluigi Maggioni,
  • Abdelkader Kahouli,
  • Sara M. Carturan,
  • Walter Raniero and
  • Alain Sylvestre

Beilstein J. Nanotechnol. 2019, 10, 428–441, doi:10.3762/bjnano.10.42

Graphical Abstract
  • with various contents and sizes of silver-oxide nanoparticles were investigated by broadband dielectric spectroscopy (BDS) in view of their final application. It was found that both the content and the size of the nanoparticles influence the value of the dielectric constant and the frequency-dependence
  • nanocrystallites appear and are clearly visible in the spectrum of sample C at 2θ = 27.8°, 32.3°, 46.3°, 54.9° and 57.6°. All these peaks can be referred to silver-oxide phases, i.e., Ag2O [59], Ag3O4 [60], AgO [61], Ag2O2 [62] and Ag2O3 [63]. It is noteworthy that there is no peak that can be ascribed to metal Ag
  • of parylene C and then promote the diffusion of oxygen-containing species inside the films. In order to decrease the oxidation, the residual pressure in the chamber should be drastically reduced (e.g., using a high-vacuum pump). Concerning the silver-oxide peaks, the reason why they are much more
PDF
Album
Full Research Paper
Published 12 Feb 2019

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • SEM (Figure 5). Plasma treated silver films under oxidation/reduction conditions Oxygen rf plasmas are well known to efficiently oxidize metallic silver films resulting in granular and nanoporous silver oxide films [73]. For any application in SERS a subsequent reduction to metallic silver is
  • oxidized silver film was performed with a hydrogen plasma at a power of 200 W and a chamber pressure of 0.38 mbar for 20 min in order to ensure complete reduction of the silver oxide film. Oxidation of sputtered silver films with oxygen plasma yields a polycrystalline silver oxide film with distinct grain
  • boundaries (Figure 6a). After reduction of the silver oxide film to silver a highly porous structure is formed (Figure 6b). At the same time the drastic increase in film thickness compared to the as-sputtered silver film is observed (Figure 6c). The measured film thickness from the cross-sectional SEM for
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Facile chemical routes to mesoporous silver substrates for SERS analysis

  • Elina A. Tastekova,
  • Alexander Y. Polyakov,
  • Anastasia E. Goldt,
  • Alexander V. Sidorov,
  • Alexandra A. Oshmyanskaya,
  • Irina V. Sukhorukova,
  • Dmitry V. Shtansky,
  • Wolgang Grünert and
  • Anastasia V. Grigorieva

Beilstein J. Nanotechnol. 2018, 9, 880–889, doi:10.3762/bjnano.9.82

Graphical Abstract
  • (meldonium; enhancement factor of ≈102) that is known for its ability to increase the endurance performance of athletes. Keywords: meldonium; mesoporous silver substrates; silver oxide; surface-enhanced Raman spectroscopy; Introduction Nowadays one of the largest sectors of the global chemical industry is
  • correspond to the metal state of silver [31]. Both characteristic energies are decreased slightly, probably, as a result of PVP adsorbates at the surface. The absence of a silver oxide phase at the surface is also beneficial for efficient surface plasmon resonance, which is strongly required for SERS. This
  • spectroscopy of rhodamine 6G (R6G) was performed using 5 μL droplets and the concentration range of the analyte was 10−8–10−6 M. The corresponding Raman spectra for R6G deposited onto pristine silver oxide samples contained no signal from the model analyte but only noisy background, indicating luminescence
PDF
Album
Supp Info
Full Research Paper
Published 14 Mar 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • localized surface plasmon resonance (LSPR) at ca. 410–430 nm), they were easily oxidized under ambient conditions, and the resultant silver deposits on titania were composed of a zero valent silver core and a silver oxide shell. XRD analysis confirmed XPS data showing silver in three oxidation states (Ag(0
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  • elevated temperatures. The overall chemical reactions within BN/Ag HNMs can be presented in the following simplified forms: Where reaction 1 represents the decomposition of silver oxide, reaction 2 corresponds to oxygen activation, and reaction 3 shows the BN oxidation. Catalytic activity The results of
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Fast diffusion of silver in TiO2 nanotube arrays

  • Wanggang Zhang,
  • Yiming Liu,
  • Diaoyu Zhou,
  • Hui Wang,
  • Wei Liang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2016, 7, 1129–1140, doi:10.3762/bjnano.7.105

Graphical Abstract
  • and are easily oxidized under the condition of UV irradiation, ambient atmosphere and room temperature [34]. Heat treatment at relatively high temperatures likely leads to the decomposition of silver oxide [34]. It is worth mentioning that the heat-treatment-induced migration/diffusion of Ag into the
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2016

Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution

  • Brunella Perito,
  • Emilia Giorgetti,
  • Paolo Marsili and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2016, 7, 465–473, doi:10.3762/bjnano.7.40

Graphical Abstract
  • attributed to a difference in silver oxide content on the AgNPs. It is known that thermal evaporation dominates in the process of ns ablation [33], while a nonthermal mechanism (attributable to photoionization [34]) is predominant in the ps ablation process. Because Ag2O dissociates above 550 K, it is
  • reasonable to expect more silver oxide in ps-ablated material. Moreover, the presence of a larger content of silver oxide on the surface of ps-ablated nanoparticles with respect to those ns-ablated was previously ascertained by means of UV–vis absorption experiments and theoretical modelling for Ag colloids
PDF
Album
Full Research Paper
Published 18 Mar 2016

Catalytic activity of nanostructured Au: Scale effects versus bimetallic/bifunctional effects in low-temperature CO oxidation on nanoporous Au

  • Lu-Cun Wang,
  • Yi Zhong,
  • Haijun Jin,
  • Daniel Widmann,
  • Jörg Weissmüller and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2013, 4, 111–128, doi:10.3762/bjnano.4.13

Graphical Abstract
  • AgO [49], with a contribution of about 28% to the total Ag(3d) intensity. The corresponding fractions of silver oxide species on the NPG(Ag)-2 and NPG(Ag)-4 catalysts were 22% and 26%, respectively, while only metallic Ag was found on the NPG(Ag)-1 sample. Table 1 lists the Ag contents (both bulk
PDF
Album
Supp Info
Full Research Paper
Published 19 Feb 2013
Other Beilstein-Institut Open Science Activities